Featured Postings

In Memoriam 2015

January 1: Donna Douglas: Played daughter Elly May Clampett in The Beverly Hillbillies. (Age 82). 1: Mario Cuomo: Governor of New York (1983 to 1994) (Age 82). 2: James Cecil Dickens: Known as Little Jimmy Dickens, best known for his song May the Bird of Paradise Fly Up ...

Read More

The disappearance of misc.activism.progressive and the emergence of Thought Crime Radio

Almost four years ago, the articles in the USENET newsgroup misc.activism.progressive ground to a halt, and moderator Rich Winkel has all but disappeared from the USENET, whom I learn resided in Harrisburg (up until 2010, at least), a half hour or so drive from his ...

Read More

Sounding off on the end of CanCon and the CRTC

I guess with the recent decision to axe all cancon requirements for daytime programming in Canada, the CRTC is crawling toward its own irrelevance. Let's not be naive, Canadian culture is that much more weakened without the protection it partially enjoyed from American influence. With ...

Read More

Eldred, Saskatchewan on the map … barely

Eldred, Saskatchewan on the map ... barely

I've written about obscure Saskatchewan communities before. Here is another community far to the north of Unity. My ancestors from France settled here. Many of my ancestors were pioneers that broke new farming ground nearest to a community called Eldred, Saskatchewan. Eldred was about 10 km ...

Read More

Zero

Once upon a time, around the year 525 during the reign of Pope John I, a monk named Dionysius invented the idea of Anno Domini by producing a calendar which marked the time since the birth of Christ. The numbering of the years was adopted ...

Read More

Fortune Cookies for Human Rights

Fortune Cookies for Human Rights

You know, I was minding my own business in this classy Chinese restaurant, engorging myself on their copious buffet, had my fill, and was handed the bill with an accompanying fortune cookie. This fortune cookie (the one to the left) really existed, and I never saw ...

Read More

Getting f(x) notation to work in Maple

Getting f(x) notation to work in Maple

Maple is a robust math environment which can graph, solve equations, and solve for the unknown with the aid of its computer algebra solver (CAS), which is capable of computing exact roots of cubic functions, for example. I wanted to demonstrate for myself that Maple could ...

Read More

Kudos to the 1050 CHUM Memorial Blog

Kudos to the 1050 CHUM Memorial Blog

Recently, I've been hit (my website that is) by someone possibly checking his plethora of links from his/her website, and when I back-traced it, I find this cool blog which acts as a convincing historical shrine to the late great 1050 CHUM Radio in Toronto. ...

Read More

The Obfuscation of Electronics: The Behringer Xenyx 502

The Obfuscation of Electronics: The Behringer Xenyx 502

This is more like a meta-review. I have gone to Canada Computes where nearly the entire Behringer line is sold, and was impressed by the specs. But does it do what I want, the way I want it? I face a number of obstacles, being a ...

Read More

Twitter

  • Follow strider_sj on TwitterNew posts and updates will be announced on my twitter account.Follow strider_sj on Twitter
  • Follow me on Twitter

The SJ Wayback Machine

Lava Lamp Clock

Blogs in Canada

See blogs and businesses for Canada

Recreational Math I: Magic Squares: the “really good” kind – Part 3

Notice that to show the rules for making these kind of magic squares, I used only odd-ordered square matrices as examples. What about matrices of even numbers of rows and columns? The rules for these vary.

A detail from Albrecht Durer's Melancholia engraving

This is a small part of a 1514 engraving by Albrecht Durer, called Melancholia. The author of the article that houses this graphic asserts that there are 32 possible 4x4 magic squares with the famous pun "1514" in the same position as above. This magic square has a symmetry in the numbers, as explained below.

The famous Durer magic square, with the year of the engraving cleverly made a part of a magic square, has a certain organization in its construction, as well as a certain symmetry. The numbers are constructed, in sequence:

_   3   2   _        _   3   2   _
_   _   _   _        5   _   _   8
_   _   _   _  ====> _   6   7   _
4   _   _   1        4   _   _   1         

_   3   2   _       16   3   2  13
5  10  11   8        5  10  11   8
9   6   7  12  ====> 9   6   7  12
4   _   _   1        4  15  14   1

So, you start from the bottom right and proceed in a horseshoe to the top then the bottom left. The next diagram places the numbers 5-8 in a pattern that is left-to-right u-shape. Then the same u-shape for the numbers 9-12 from left to right, except this time it’s upside-down. Finally ending as we started, the same horseshoe shape (except right side up) from right to left.

Durer’s square has many things about it, apart from its magic number (34) which works on all the attendant diagonals, rows and columns. The middle 4 squares add up to 34 (10 + 11 + 6 + 7 = 34); the four corners add to 34 (16 + 13 + 4 + 1 = 34), and all corner foursomes add to 34: (16 + 3 + 5 + 10); (2 + 13 + 11 + 8); (9 + 6 + 4 + 15); and (7 + 12 + 14 + 1).

The numbers at the ends of the two middle rows add to 34:

16   3   2  13
 5  10  11   8
 9   6   7  12
 4  15  14   1

and the numbers at the tops and bottoms of the two middle columns add to 34:

16   3   2  13
 5  10  11   8
 9   6   7  12
 4  15  14   1

If we take another symmetrical combination: a rightward-slanting rectangle whose corners are 2, 8, 9, and 15, these also add to 34:

16   3   2  13
 5  10  11   8
 9   6   7  12
 4  15  14   1

The leftward-slanting rectangle, whose corners are 5, 3, 12, and 14 also add to 34:

16   3   2  13
 5  10  11   8
 9   6   7  12
 4  15  14   1

Starting from 2 and proceeding in an “L”-shape to the left to the number 5, and continuing counter-clockwise in the same manner gets us the corners of a tilted square whose numbers 2, 5, 15, and 12, add to 34:

16   3   2  13
 5  10  11   8
 9   6   7  12
 4  15  14   1

Starting from “3” and doing likewise yields the numbers 3, 9, 14, and 8, also adding to 34:

16   3   2  13
 5  10  11   8
 9   6   7  12
 4  15  14   1

And what about this talk about “symmetry”? By this, we mean that we may take pairs of numbers at the start and end of any row, and they add up to the same number in a symmetrical place elsewhere. 16 + 3 = 4 + 15, taking the top and bottom of the first and second column. Likewise can be done for the last two columns: 2 + 13 = 14 + 1. The middle two rows have the same property: 5 + 10 = 9 + 6; and 11 + 8 = 7 + 12. On a larger scale, the sums of the middle two rows of columns 1 and 2 are the same as the tops and bottoms of columns 3 and 4: 11 + 8 = 7 + 12 = 16 + 3 = 4 + 15. Likewise, the sums of the middle two rows of columns 3 and 4 are the same as the tops and bottoms of columns 1 and 2: 2 + 13 = 14 + 1 = 5 + 10 = 9 + 6. These two groups of symmetrical numbers are illustrated below in red and green:

16   3   2  13
 5  10  11   8
 9   6   7  12
 4  15  14   1

The sums of 15 (green) and 18 (red) across each row form this pattern

16   3   2  13
 5  10  11   8
 9   6   7  12
 4  15  14   1

The downward symmetry is also interesting. Here, the sum of 25 is in gold and the sum of 9 is in blue. In the process, we can discern the patterns that we used to construct the square in the first place:

16   3   2  13
 5  10  11   8
 9   6   7  12
 4  15  14   1

This is an incredible amount of magic, but if you follow the order of filling (horseshoes are right-to-left, u-shapes are left-to-right, along with the peculiar pattern of filling u’s and horseshoes), there really are four possible patterns that have these “hyper-magic” qualities, but you lose the “1514” idea in two of them:

 8  11  10   5      12   7   6   9       4  15  14   1
13   2   3  16       1  14  15   4      12   6   7   9
 1  14  15   4      13   2   3  16       5  11  10   8
12   7   6   9       8  11  10   5      16   3   2  13

Of course, you could reverse all of the numbers in the rows of the first two squares to get your “1514” back.

Every time I look at that darned Durer square, I keep seeing more patterns. I think there comes a point where one has to leave the remaining observations up to the reader.

There is yet another 4×4 square, and with it we can increase the magic, if that can even be conceivable after all I have said. But there is a square with even more magic than the Durer square. R. J. Reichmann mentioned it in his book “The Fascination of Numbers”, first published in 1957. The square could be constructed like this:

-   -   3   -        -   -   3   6        -  10   3   6        15  10   3   6
4   -   -   - ====>  4   5   -   - ====>  4   5   -   9  ====>  4   5  16   9
-   -   2   -        -   -   2   7        -  11   2   7        14  11   2   7
1   -   -   -        1   8   -   -        1   8   -  12         1   8  13  12

This square has all the magic of the Durer square and then some. One thing this new square has over the Durer square is that any four numbers in square formation will add to 34, from anywhere in the square. These include the foursomes:

10  3     16   9     11   2       4   5
5  16      2   7      8  13      14  11
Share

Leave a Reply

You can use these HTML tags

<a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>