Featured Postings

In Memoriam 2015

January 1: Donna Douglas: Played daughter Elly May Clampett in The Beverly Hillbillies. (Age 82). 1: Mario Cuomo: Governor of New York (1983 to 1994) (Age 82). 2: James Cecil Dickens: Known as Little Jimmy Dickens, best known for his song May the Bird of Paradise Fly Up ...

Read More

The disappearance of misc.activism.progressive and the emergence of Thought Crime Radio

Almost four years ago, the articles in the USENET newsgroup misc.activism.progressive ground to a halt, and moderator Rich Winkel has all but disappeared from the USENET, whom I learn resided in Harrisburg (up until 2010, at least), a half hour or so drive from his ...

Read More

Sounding off on the end of CanCon and the CRTC

I guess with the recent decision to axe all cancon requirements for daytime programming in Canada, the CRTC is crawling toward its own irrelevance. Let's not be naive, Canadian culture is that much more weakened without the protection it partially enjoyed from American influence. With ...

Read More

Eldred, Saskatchewan on the map … barely

Eldred, Saskatchewan on the map ... barely

I've written about obscure Saskatchewan communities before. Here is another community far to the north of Unity. My ancestors from France settled here. Many of my ancestors were pioneers that broke new farming ground nearest to a community called Eldred, Saskatchewan. Eldred was about 10 km ...

Read More

Zero

Once upon a time, around the year 525 during the reign of Pope John I, a monk named Dionysius invented the idea of Anno Domini by producing a calendar which marked the time since the birth of Christ. The numbering of the years was adopted ...

Read More

Fortune Cookies for Human Rights

Fortune Cookies for Human Rights

You know, I was minding my own business in this classy Chinese restaurant, engorging myself on their copious buffet, had my fill, and was handed the bill with an accompanying fortune cookie. This fortune cookie (the one to the left) really existed, and I never saw ...

Read More

Getting f(x) notation to work in Maple

Getting f(x) notation to work in Maple

Maple is a robust math environment which can graph, solve equations, and solve for the unknown with the aid of its computer algebra solver (CAS), which is capable of computing exact roots of cubic functions, for example. I wanted to demonstrate for myself that Maple could ...

Read More

Kudos to the 1050 CHUM Memorial Blog

Kudos to the 1050 CHUM Memorial Blog

Recently, I've been hit (my website that is) by someone possibly checking his plethora of links from his/her website, and when I back-traced it, I find this cool blog which acts as a convincing historical shrine to the late great 1050 CHUM Radio in Toronto. ...

Read More

The Obfuscation of Electronics: The Behringer Xenyx 502

The Obfuscation of Electronics: The Behringer Xenyx 502

This is more like a meta-review. I have gone to Canada Computes where nearly the entire Behringer line is sold, and was impressed by the specs. But does it do what I want, the way I want it? I face a number of obstacles, being a ...

Read More

Twitter

  • Follow strider_sj on TwitterNew posts and updates will be announced on my twitter account.Follow strider_sj on Twitter
  • Follow me on Twitter

The SJ Wayback Machine

Lava Lamp Clock

Blogs in Canada

See blogs and businesses for Canada

Recreational Math I: Magic Squares: the “really good” kind – Part 6

I have met with some disappointment as to how a methodology for creating a 4×4 square should pan out, and instead I have come up with many different algorithms, each resulting in its own small sets of magic squares, but had stumbled upon a set of squares with similar “hyper-magical” properties which I called the Durer Series.

I had met with some disappointment at this, and am still in the middle of writing my own 4×4 square program in Visual Basic .NET (it’s going to use a “brute force” algorithm … sorry!). With that, I had to learn about how .NET does objects. To those of you out of the loop on the recent .NET versions of VB, this language actually allows you to create your own novel objects, thus saving processing time if the right kind of objects are created. It’s a work in progress.

For now, I wanted to centre on the pièce de résistance of this series: that of the odd-ordered magic squares, those of order 5 and beyond. As I hinted at the beginning of this series, these are special and unique in that an algorithm can be made for an order-n magic square (where n is odd) which can generate (n!)2 squares, all magic (even after weeding out duplicates, the numbers of unique squares will still be in the thousands).

This seems to be a hard-to-find algorithm, except from a book called “The Fascination of Numbers”, written on the year of The Queen’s coronation in 1957 by W. J. Reichmann while he was still a headmaster at a Grammar School located in Spalding, Lincolnshire, England (according to my signed copy of the book, purchased from an English vendor through Amazon used books). I read it for the first time at a university library, and it is likely to be found in a similar univeristy or college collection near you.

What I like about this algorithm is that while I have used it to write computer programs for magic squares, it really requires no more than pencil and paper, and a bit of skill at addition.

First of all, write down the numbers from 1 to 5, in any order at all:

3, 2, 1, 5, 4

A 5×5 square matrix is constructed in a pattern by starting from the fourth number in the sequence, then proceeding with the 5th number, then the first, second and finally the third:

4 2 1 5 3
5 3 4 2 1
2 1 5 3 4
3 4 2 1 5
1 5 3 4 2

Next, scramble the first 5 multiples of 5 (counting 0):

20, 0, 5, 15, 10

Create a 5×5 matrix by shifting the order of these numbers by 2 to the left as follows:

20  0  5 15 10
 5 15 10 20  0
10 20  0  5 15
 0  5 15 10 20
15 10 20  0  5

Now add them together, adding together numbers located in the same columns and rows in both squares, as in matrix addition:

24 2 6 20 13
10 18 14 22 1
12 21 5 8 19
3 9 17 11 25
16 15 23 4 7

The result is a magic square which has many more ways of obtaining  the magic number 65 than just adding the rows, columns, and diagonals. Taking any 3×3 sub-square on the corners or left/right sides of this square and adding its corner numbers to the middle number will obtain 65. This seems to be true of all magic squares made by this method. Since both squares can be scrambled independently, there will be (5!)2 = 14,400 possible squares before duplicates are weeded out. I have written programs in many languages regarding this 5×5 square, and can attest to the robustness of this algorithm in producing a nearly endless series of 5×5 magic squares, all sharing very similar “magical” properties.

Reichmann also reminds us that the scrambled 5×5 squares we created initially are also magic.

I suspect there may be more than 14,400 magic squares. Are there any squares that cannot be produced by this algorithm? This must be checked against a “brute-force” (read: computational) method for generating all possible magic squares to see if this is really the definitive number. It is certainly a couple of orders of magnitude greater than what Danny Dawson did with his 4×4 squares (around 920 squares or so, with some duplicates). It would also be interesting to know what squares could not have originiated from Reichmann’s algorithm (proven by working backwards to show, supposedly, that duplicate numbers appear in some rows of the first or second matrix, which disappears in the resultant matrix.

It also seems that 4×4 and 5×5 squares can have such “compound” magical properties; it is harder to find for 7×7 matrices, although they are additive to the magic number in just enough ways so as to say they are magic. We’ll leave that for the next journal entry.

Share

Leave a Reply

You can use these HTML tags

<a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>